本文研究在线算法增强了多个机器学习预测。尽管近年来已经广泛研究了随着单个预测的增强在线算法,但多个预测设置的文献很少。在本文中,我们提供了一个通用算法框架,用于在线涵盖多个预测的问题,该框架获得了在线解决方案,该解决方案具有与最佳预测指标的性能相对的竞争力。我们的算法将预测的使用纳入了在线算法的经典分析中。我们应用算法框架来解决经典问题,例如在线封面,(加权)缓存和在线设施位置,以在多个预测设置中。我们的算法也可以鲁棒化,即,可以根据最佳的预测和最佳在线算法的性能(无预测)同时使算法具有竞争力。
translated by 谷歌翻译
We introduce a pivot for exact selective inference with randomization. Not only does our pivot lead to exact inference in Gaussian regression models, but it is also available in closed form. We reduce the problem of exact selective inference to a bivariate truncated Gaussian distribution. By doing so, we give up some power that is achieved with approximate inference in Panigrahi and Taylor (2022). Yet we always produce narrower confidence intervals than a closely related data-splitting procedure. For popular instances of Gaussian regression, this price -- in terms of power -- in exchange for exact selective inference is demonstrated in simulated experiments and in an HIV drug resistance analysis.
translated by 谷歌翻译
我们考虑了有多个具有不同奖励功能的利益相关者的情节强化学习问题。我们的目标是输出有关不同奖励功能在社会上公平的政策。先前的工作提出了不同的目标,即公平政策必须优化,包括最低福利和广义的基尼福利。我们首先对问题进行公理视图,并提出四个公理,任何这样的公平目标都必须满足。我们表明,纳什社会福利是一个独特的目标,它独特地满足了所有四个目标,而先前的目标无法满足所有四个公理。然后,我们考虑了基础模型,即马尔可夫决策过程未知的问题的学习版本。我们考虑到最大程度地降低对公平政策最大化的遗憾的问题,从而最大化三个不同的公平目标 - 最低限度的福利,广义基尼福利和纳什社会福利。基于乐观的计划,我们提出了一种通用的学习算法,并在三种不同的政策方面得出了遗憾。为了纳什社会福利的目的,我们还遗憾地得出了一个遗憾的遗憾,它以$ n $(代理的数量)成倍增长。最后,我们表明,为了最低限度福利的目的,对于较弱的遗憾概念,人们可以将遗憾提高到$ o(h)$。
translated by 谷歌翻译
我们介绍了表演性强化学习的框架,学习者选择的政策会影响环境的基本奖励和过渡动态。遵循有关表演预测的最新文献〜\ cite {perdomo等。 Al。,2020},我们介绍了性能稳定政策的概念。然后,我们考虑了强化学习问题的正则版本,并表明,在合理的假设对过渡动态的合理假设下,反复优化此目标将其收敛到性能稳定的策略。我们的证明利用了强化学习问题的双重观点,并且可能在分析其他算法与决策依赖性环境的融合方面具有独立的兴趣。然后,我们将结果扩展到学习者仅执行梯度上升步骤而不是完全优化目标的设置,以及学习者可以从变化的环境中访问有限数量的轨迹的设置。对于这两种设置,我们都利用表演性增强学习的双重表述,并建立与稳定解决方案的融合。最后,通过对网格世界环境的广泛实验,我们证明了收敛对各种参数的依赖性,例如正则化,平滑度和样品数量。
translated by 谷歌翻译
多任务学习经常用于对一组相同功能集的一组相关响应变量进行建模,从而相对于分别处理每个响应变量的方法提高了预测性能和建模精度。尽管多任务学习的潜力比单任务替代方案具有更强大的推理,但该领域的先前工作在很大程度上忽略了不确定性量化。我们在本文中的重点是神经影像学中常见的多任务问题,其目标是了解多个认知任务分数(或其他主题级评估)与从成像收集的脑连接数据之间的关系。我们提出了一个选择性推断以解决此问题的框架,并具有以下灵活性:(i)通过稀疏性惩罚共同确定每个任务的相关协变量,(ii)基于估计的稀疏性在模型中进行有效推理结构体。我们的框架为推理提供了新的有条件过程,基于选择事件的改进,该事件产生了可拖延的选择调整后的可能性。这给出了最大似然推理的估计方程式的近似系统,可通过单个凸优化问题解决,并使我们能够在大约正确的覆盖范围内有效地形成置信区间。我们的选择性推理方法应用于青少年认知大脑发展(ABCD)研究的模拟数据和数据,比常用的替代方案(例如数据拆分)产生了更紧密的置信区间。我们还通过模拟证明,与单任务方法相比,具有选择性推理的多任务学习可以更准确地恢复真实信号。
translated by 谷歌翻译
Cohen等人的深度学习实验。 [2021]使用确定性梯度下降(GD)显示学习率(LR)和清晰度(即Hessian最大的特征值)的稳定边缘(EOS)阶段不再像传统优化一样行为。清晰度稳定在$ 2/$ LR的左右,并且在迭代中损失不断上下,但仍有整体下降趋势。当前的论文数学分析了EOS阶段中隐式正则化的新机制,因此,由于非平滑损失景观而导致的GD更新沿着最小损失的多种流量进行了一些确定性流程发展。这与许多先前关于隐式偏差依靠无限更新或梯度中的噪声的结果相反。正式地,对于具有某些规律性条件的任何平滑函数$ l $,对于(1)标准化的GD,即具有不同的lr $ \ eta_t = \ frac {\ eta} {||的GD证明了此效果。 \ nabla l(x(t))||} $和损失$ l $; (2)具有常数LR和损失$ \ sqrt {l- \ min_x l(x)} $的GD。两者都可以证明进入稳定性的边缘,在歧管上相关的流量最小化$ \ lambda_ {1}(\ nabla^2 l)$。一项实验研究证实了上述理论结果。
translated by 谷歌翻译
传统上,自动语音识别的研究重点是对音频表示的本地首选编码,以预测话语中的语音。不幸的是,依靠此类超本地信息的方法往往容易受到本地级腐败(例如音频框架掉落或大声的噪音)和全球级别的噪音(例如环境噪音或背景噪音)在训练期间看到。在这项工作中,我们介绍了一种新颖的方法,该方法利用了基于掩盖语言建模的自我监督的学习技术来计算对话语发生的环境的全球多模式编码。然后,我们使用一个新的深融合框架将这种全局上下文集成到传统的ASR方法中,并证明所得的方法可以在LibrisPeech上胜过高达7%的基线方法;内部数据集的收益范围从6%(较大型号)到45%(在较小的型号上)。
translated by 谷歌翻译
图形神经网络(GNN),图数据上深度神经网络的概括已被广泛用于各个领域,从药物发现到推荐系统。但是,当可用样本很少的情况下,这些应用程序的GNN是有限的。元学习一直是解决机器学习中缺乏样品的重要框架,近年来,研究人员已经开始将元学习应用于GNNS。在这项工作中,我们提供了对涉及GNN的不同元学习方法的综合调查,这些方法在各种图表中显示出使用这两种方法的力量。我们根据提出的架构,共享表示和应用程序分类文献。最后,我们讨论了几个激动人心的未来研究方向和打开问题。
translated by 谷歌翻译
在选择组套索(或普遍的变体,例如重叠,稀疏或标准化的组套索)之后,在没有选择偏见的调整的情况下,对所选参数的推断是不可靠的。在受惩罚的高斯回归设置中,现有方法为选择事件提供了调整,这些事件可以表示为数据变量中的线性不平等。然而,这种表示未能与组套索一起选择,并实质上阻碍了随后的选择后推断的范围。推论兴趣的关键问题 - 例如,推断选定变量对结果的影响 - 仍未得到解答。在本文中,我们开发了一种一致的,选择性的贝叶斯方法,通过得出似然调整因子和近似值来解决现有差距,从而消除了组中的偏见。对模拟数据和人类Connectome项目数据的实验表明,我们的方法恢复了所选组中参数的影响,同时仅支付较小的偏差调整价格。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译